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High-spatial-resolution OH planar laser-induced fluorescence was measured for a premixed 

ethylene-air turbulent flame in an electrically-heated Mach 2 continuous-flow facility 

(University of Virginia Supersonic Combustion Facility, Configuration E.) The facility 

comprised a Mach 2 nozzle, an isolator with flush-wall fuel injectors, a combustor with optical 

access, and an extender. The flame was anchored at a cavity flameholder with a backward-

facing step of height 9 mm. The temperature-insensitive Q1(8) transition of OH was excited 

using laser light of wavelength 283.55 nm. A spatial filter was used to create a laser sheet 

approximately 25 μm thick based on full-width at half maximum (FWHM). Extension tubes 

increased the magnification of an intensified camera system, achieving in-plane resolution of 

40 μm based on a 50% modulation transfer function (MTF). The facility was tested with total 

temperature 1200 K, total pressure 300 kPa, local fuel/air equivalence ratios of approximately 

0.4, and local Mach number of approximately 0.73 in the combustor. A test case with reduced 

total temperature and another with reduced equivalence ratio were also tested. PLIF images 

were acquired along a streamwise plane bisecting the cavity flameholder, from the backward 

facing step to 120 mm downstream of the step. The smallest observed features in the flow had 

width of approximately 110 μm.  Flame surface density was calculated for OH PLIF images. 

Nomenclature 

η = Kolmogorov length scale 

f = f-number 

FSD = flame surface density 

H = cavity height 

I = image intensity 

L = integral length scale 

m = image modulation 

M = image magnification, Mach number 

MTF = modulation transfer function 
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ν = kinematic viscosity 

P0 = total pressure 

ϕ = fuel/air equivalence ratio 

RL = resolution limit 

T0 = total temperature 

u = root-mean-square velocity 

x, y, z = facility coordinates 

xp, yp = pixel coordinates 

I. Introduction 

LANAR laser-induced fluorescence (PLIF) is an optical measurement technique in which a thin sheet of laser 

light excites a chemical species in a fluid flow. The resulting fluorescence is captured by a camera and provides 

an instantaneous, spatially-resolved, qualitative or quantitative measurement of the concentration of that species. The 

setup described in this study was used to capture qualitative OH PLIF images at the University of Virginia Supersonic 

Combustion Facility. This study improves upon the work done by Cantu et al. who previously performed OH PLIF 

imaging in the same flowpath and facility.1 Two important changes were made for this study. First, extension tubes 

were added to the camera lens in order to increase magnification and in-plane resolution. Second, a spatial filter and 

different laser sheet forming optics were used to create a much thinner laser sheet than used previously. 

 PLIF systems have been used extensively to image turbulent flames.2-6 Systems for PLIF and other optical 

measurement techniques are well-suited for measuring turbulent combustion flows because they are non-intrusive and 

can be built around existing test facilities. PLIF creates two-dimensional maps indicating the locations of specific 

chemical species in the flow. Maps of the presence of OH and other combustion products give insight into leading-

edge structure of turbulent flames. Maximizing the in-plane spatial resolution and minimizing the thickness of the 

laser sheet allows examination of the smallest flame structures in the flow. High-spatial-resolution OH PLIF data can 

be used to validate computational models of turbulent combustion at small length scales. 2,3,4,5,6 

II. Experimental set-up 

A. Facility 

The University of Virginia Supersonic Combustion Facility 

(UVaSCF)7,8 is an electrically-heated continuous-flow clean-air 

facility capable of sustaining a Mach 2 flow with total temperature 

1200 K, simulating the enthalpy of a scramjet in Mach 5 flight. The 

facility configuration used for this study is the so-called “modified 

Configuration E” described by Rockwell et al.,9 consisting of a Mach 

2 nozzle, followed by an isolator with fuel injectors, the combustor 

test section, a constant area section, and an extender with an air 

throttle. Modular design of the facility allows various cavity 

flameholder designs to be tested in these conditions. Quartz windows 

allow camera access from two sides for optical techniques such as 

PLIF. A third side contains a narrow window for introducing a light 

sheet.  

A copper insert was used as the fourth wall for the scramjet 

combustor. The insert contained a cavity flameholder of height H = 

9 mm. After the incoming flow is electrically heated, hydrogen is 

injected into the flow. When the hydrogen flame is established, 

ethylene enters the flow through flush-wall injectors in the isolator, 

resulting in a premixed flame that is anchored at the cavity. Figure 1 

shows a long-exposure natural luminosity image of combustion in the 

facility captured with a consumer-grade camera. The image shows a 

turbulent ethylene-air flame anchored at the backward-facing step of 

the cavity. The coordinate system used in this paper originates in the plane of the rearward-facing step at the 

downstream projection of the center of the nozzle exit. The x-axis is positive in the downstream direction, and the y-

axis is positive towards the cavity wall. 

P 

 
Figure 1. Ethylene-air cavity-stabilized 

flame at UVaSCF 
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B. Resolution limit requirement 

The size of the smallest eddies in a turbulent flow have is defined by the Kolmogorov length scale. 10 This is the 

scale at which kinetic energy dissipates via molecular diffusion. A turbulent flow is also described by an integral 

length scale L, which defines the size of the largest eddies in the flow.11 Previous computational and particle image 

velocimetry investigations of this flowpath estimated the 𝐿 = 5 mm, root-mean square velocity 𝑢 = 50 m/s, and 

kinematic viscosity 𝜐 = 4 to 5 m2/s.12  The Kolmogorov length scale 𝜂 can be estimated13 using Eq. (1) at 7 to 8 µm. 

 

             𝜂 = (𝜐/𝑢)3/4𝐿1/4                (1) 

 

In his review of turbulent flame structure experiments, Driscoll14 concludes that eddies at this scale are not strong 

enough to perturb flame structure. An experiment by Kobayashi et al.15 suggests that the smallest flame structures are 

at a scale ten times the Kolmogorov length. Therefore, 10𝜂 ≈ 70 μm estimates the resolution limit that a PLIF system 

must achieve to resolve all significant flame structures in the flow. 

C. Beam path 

A 1064 nm laser beam pulsed at 20 Hz was generated by Q-switching a SpectraPhysics Nd:YAG laser. This was 

frequency-doubled to 532 nm and used to pump a Sirah Cobra Stretch dye laser circulating a mixture of Rhodamine 

590 and Rhodamine 610 laser dyes. The dye laser output was tuned to 567.10 nm and frequency doubled to 283.55 

nm in order to excite the Q1(8) transition of OH. This transition was used because fluorescence intensity at this 

wavelength is relatively temperature-independent1,16 so that variations in signal intensity can be interpreted mainly as 

OH concentration variations (and not temperature variations). Energy at the output of the dye laser was approximately 

15 mJ/pulse. 

Figure 2 is a labeled diagram of the beam path. The beam exited the laser cart and passed through a periscope, 

followed by a pair of cylindrical lenses of focal length 500 mm that focused and then recollimated the beam. All focal 

lengths in this description are nominal values. A spatial filter (Fig. 3) was placed at the beam focus (location 2 in Fig. 

2.) This filter was previously the entrance slit for a spectrometer in which the gap between two steel blades is set by 

an adjustable knob. The device was modified by putting the blades in backwards so that the blunt ends meet, because 

the sharp ends were slowly ablated by the laser beam in the original configuration. By narrowing the gap around the 

beam focus, abnormalities on the edges of the laser sheet were removed. 

The beam was then routed through a remotely-operated three-axis translation system. Mirrors were set up such 

that the final laser sheet could be moved in three dimensions. A 50 mm focal length cylindrical lens was used to focus 

and then expand the beam. A 300 mm focal length spherical lens then collimated the beam in the dimension of this 

expansion, and focused it in the other dimension to form a laser sheet. Finally, two planar mirrors were used in a 

periscope configuration to direct the laser sheet into the test section.  

 

Figure 3. Spatial filter 

 
1. 500 mm focal length cylindrical lens 

2. Spatial filter 

3. 500 mm focal length cylindrical lens 

4. Relay mirrors 

5. 50 mm focal length cylindrical lens 

6. 300 mm focal length spherical lens 

7. planar mirror periscope 

8. flame 

 

Figure 2. Laser sheet optics diagram. Not to scale. 
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D. Laser sheet profile 

The thickness of the laser sheet waist at the test section was measured prior to operating the facility using a 2448 

× 2048 pixel, 16-bit CCD beam-profiling camera from Point Grey. The filter in front of the detector was removed to 

allow the detection of ultraviolet light. The beam was split after the spherical lens and a small percentage was directed 

into the beam-profiling camera. A single-element fused silica lens of 20 mm focal length was used to directly image 

the focus on the sensor with 11.3:1 magnification. The lens tube held several neutral density filters designed for 

ultraviolet light, which were removed individually until a laser sheet profile could be imaged. Decreasing the aperture 

width of the spatial filter shown in Fig. 3 removed non-Gaussian features from the edges of the sheet, and resulted in 

a thinner sheet waist.  

Figure 4 shows intensity profile across the laser sheet for several spatial filter knob settings. This numerical setting 

is the width of the spatial filter aperture offset by an arbitrary constant value; the setting is repeatable but it is not an 

absolute aperture width. The filter was set at 125 μm for OH PLIF. Filter settings smaller than this caused significant 

ablation of the filter. This setting produced a laser sheet full width at half maximum (FWHM) of approximately 25 

μm. The sheet profile at this setting retained some non-Gaussian features.  

Figure 4. Laser sheet intensity profiles at various spatial filter settings 

 

E. Camera system 

OH PLIF images were taken using a PI-Max 4 intensified CCD camera. 

The camera was mounted on the same three-axis translation system as the 

laser sheet optics, such that the focus of the laser sheet remained centered 

in the field of view as the sheet moved. A fourth translation stage allowed 

the camera to remotely translate closer to and further away from the laser 

sheet. Using this stage, the camera was remotely focused on the laser sheet 

during facility operations. 

A 100 mm focal length, 𝑓/2.8 Cerco camera lens was mounted on the 

camera with extension tubes. The lens contained a Semrock FF02-320/40-

30-D bandpass filter, which admits light from 310 to 340 nm; this was used 

to block laser reflections and other interferences. To characterize the 

resolution limit of this system, the camera was focused on a USAF-1951 

resolution target backlit by an ultraviolet light source (Fig. 5). This glass 

target presents line pairs of a range of sizes. The lines are alternately 

transparent and opaque.  

A modulation transfer function MTF, defined by Eq. (2) and (3) (Ref. 

17), characterized the resolution of the system. Modulation, m, is defined 

as a function of maximum and minimum intensities I in a pair of bright and dark areas. The “image” modulation is 

recorded at each line pair and compared to a baseline “object” modulation recorded at the large bright square and the 

surrounding dark area.   The resolution limit RL of the system is defined as the width of the line pair at which MTF = 

50%. 

 

             𝑚 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
              (2) 

 

  
Figure 5. USAF-1951 resolution 

target. Image taken with 76.2 mm 

extension tube configuration. 
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             𝑀𝑇𝐹 =
𝑚𝑖𝑚𝑎𝑔𝑒

𝑚𝑜𝑏𝑗𝑒𝑐𝑡
              (3) 

 

Images were taken using three total lengths of extension tubes: 76.2, 152.4, and 203.2 mm. Image magnification 

values M were recorded for each case and compared with resolution limits. We observed that the product of the 

resolution limit and the magnification remained approximately constant.. Equation (4) describes this observation; it is 

valid only for the present camera and lens. Signal intensity was observed to decrease with increasing magnification. 

This decrease agreed with Eq. (5), given by Clemens.18 Despite this loss of signal and considering that the fluorescence 

of OH is relatively intense, the 203.2 mm extension tube configuration was chosen in order to maximize the planar 

resolution of the PLIF images. Figure 6 compares theoretical and measured values for magnification, image intensity, 

and resolution limit at different extention tube lengths. 

 

             𝑅𝐿 ∙ 𝑀 = 77 μm              (4) 

 

               𝐼 ∝ (𝑀 + 1)−2              (5) 

 

The camera was focused on a 1 mm grid dotcard which was illuminated at a very shallow angle by the laser sheet. 

An analysis of the dotcard images indicated a square field of view 6.86 × 6.86 mm across 512 × 512 pixels (using 2 × 

2 binning of the 1064 × 1064 pixel array). Pixel binning was used to increase the signal-to-noise ratio.  The system 

therefore had 76.8 pixels/mm or 13.4 μm per binned pixel. The sensor for the PI-Max 4 is 13.1 × 13.1 mm; therefore 

M = 1.91. Through Eq. (4), expected in-plane resolution for PLIF images was 40 μm.  

III. Experimental procedures 

Three test cases were investigated (Table 1.) Case A 

represents the standard test conditions for the facility. Cases B 

and C have reduced fuel/air equivalence ratio and total 

temperature, respectively.  These cases represent conditions 

near blow off. The facility air throttle was not used for any test 

case. After establishing the Case A flame in the facility, the 

laser sheet was directed onto the spanwise centerline. The 

camera was then focused on the fluorescence produced by the 

excitation of the flame by the laser sheet. The camera was set 

to record images at 75% of maximum gain, with a gate duration 

of 150 ns. The camera was triggered by the Nd:YAG laser. Due 

to bandwidth limits, the camera acquired images at 10 Hz, with 

every second laser pulse.  

Images were taken while the translation system’s x-axis motor was in motion. The camera travelled along the x-

axis at 0.25 mm/s while acquiring images at 10 Hz, resulting in 40 images taken for every millimeter travelled. Six x-

direction sweeps were acquired from x/H = 0 to 14.10, and from y/H = -0.67 to 2.70 for cases A and B. Case C data 

was confined to a smaller range, due to fuel limitations. Most (x,y) point locations were measured 275 times. Regions 

 Case A  

(base) 

Case B  

(low-ϕ) 

Case C 

 (low- T0) 

T0 (K) 1200 1200 1100 

P0 (kPa) 300 300 300 

ϕcavity wall 0.21 0.17 0.21 

ϕobservation wall 0.20 0.17 0.21 

Mcombustor
9 0.73 0.73 0.73 

 

Table 1. UVaSCF test conditions 

 
 

Figure 6. Comparisons between extension tube length, magnification, image intensity, and resolution limits. 
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of overlap between scans received more measurements.  Regions near the start or the end of each scan received fewer 

measurements during the scans; however, where these reduced-coverage regions occurred near the cavity flameholder, 

extra images were acquired with the camera stationary.  Approximately 15,000 images were captured for each case. 

A sweep of background images was taken at a speed of 1 mm/s, over the same x range and at y/H = -0.11. These 

images were taken with combustion active, but with the laser blocked. 

Occasionally, it was necessary to refocus the camera. This may have been caused by gradual heating and expansion 

of the facility, camera support structure, and lens tube. The camera was focused based on the observed sharpness of 

flame structures. Focusing motions were very small, because the depth of focus of the camera was on the order of one 

millimeter.  

IV. Results 

A. Flame statistics  

MATLAB scripts were developed to compute statistics from the acquired PLIF images. Each pixel in each 

background image was assigned an x-coordinate, and mean background counts as a function of x-position was 

computed.  This background intensity function was used to subtract a background signal level from the instantaneous 

images and mean image data shown below. Each pixel in each PLIF image was assigned x- and y-coordinates. These 

coordinates were used to map data from each image onto a 2312 × 9473 pixel matrix spanning the entire observed 

region. A compilation of single images from Case A are displayed in Fig. 7. Mean intensity (Fig. 8) was calculated 

for each pixel location in the matrix. 

 

 
Figure 7. OH PLIF single-image compilation, Case A. 

 

 
Figure 8. Mean OH PLIF signal intensity, Case A. 

 

Flame intermittency19,20 was calculated to provide a statistical measurement of flame front movement.  For each 

pixel location, intermittency is defined1 as the proportion of images in which the OH signal is above a specified 

threshold. A threshold of 6,000 counts was used to binarize all images into bright regions, indicating significant 

concentrations of OH and other reactants, and dark regions, indicating a lack of significant OH concentration. The 

thresholded images were averaged across a 2312 × 9473 pixel matrix and converted to a percentile scale, creating an 

intermittency image.  This image was thresholded to create contours of 5%, 50%, and 95% intermittency, displayed 

in Fig. 9. These contours provide a visualization of the spatial envelope in which the flame oscillates. 
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95% 

 

50% 

5% 

Figure 9. Intermittency contours, Case A. 

 

Intermittency was also used to calculate flame angles and 

compare different test conditions. The flame angle is the angle 

between the free stream (the x-direction) and the line traced by 

the outer boundary of the flame. Intermittency data from all 

three cases was thresholded to create 5% contours. 

Intermittency contours include a small region near the 

backward-facing step that does not follow the flame front; these 

pixels were ignored.  Figure 10 displays the resulting 5% 

intermittency contours.  

A line of best fit was plotted through each contour; this line defined the flame angle. Table 2 lists the flame angles 

for the three cases and compares them with data obtained at lower resolution by Cantu et. al.1 It is important to note 

that the study by Cantu et. al. calculated intermittency using a threshold at 20% of the maximum signal for each image, 

binarizing each image differently. The smaller field-of-view in the current work creates many low-contrast images in 

which the flame front is not present. A percentile threshold does not binarize these images appropriately, so a constant 

threshold was chosen; this complicates comparison with Cantu et. al.  

Flame angles for Cases A and B are smaller than the values from the previous work by less than one degree. An 

increase in flame angle with decreased ϕ was noted in both experiments. In the current work, flame angle decreased 

with decreased T0. No comparison with Case C in the current work was possible, because the low-T0 case in the 

previous work was conducted with the air throttle on. 

 

Case A 

 

Case B 

Case C 

Figure 10. 5% intermittency contours for three test cases. 

B. Single image analysis 

Single OH PLIF images provide instantaneous measurements of the shape of the flame at different points in the 

flow.  The relevant flame timescales are too short to capture with 10 Hz imaging, so the images have no temporal 

correlation.  OH signal denotes areas of products of combustion; lack of signal implies the presence of reactants.  The 

three single images in Figure 11 show different levels of turbulence based on the size of flow structures imaged, from 

least turbulent at the left to most turbulent at the right.  All single images presented in this section are from Case A, in 

the shear layer adjacent to the cavity. The leftmost image shows a flame front that is wrinkled but connected 

throughout, which is typical of images acquired at this spatial location.  The other two images, obtrained further 

downstream, show increasingly wrinkled flames and distributed flame regions. 

 

 Case A  

(base) 

Case B  

(low-ϕ) 

Case C 

 (low- T0) 

Current work 9.8° 10.3° 7.73° 

Cantu et. al. 1 10.4° 11.1°  

 

Table 2. Flame angle comparisons based on 

5% intermittency 
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Figure 11. Single OH PLIF images. Image center coordinates, left to right: x/H = 1.88, 2.42, 4.09, y/H = 1.71. 

 

Images were searched manually for very thin OH structures. One such structure is shown in Fig. 12.  The length 

of this structure is representative of the smallest structures observed.  An intensity profile (Fig. 13) was calculated 

across the structure at the location of the yellow line.  The Gaussian fit for the profile had FWHM = 110 μm.  This is 

somewhat greater than the minimum structure size prediction (10𝜂 ≈ 70 μm.)  No structures close in size to the 

expected resolution limit of the system (40 μm) were observed. This suggests that this OH PLIF system is able to 

resolve the smallest features of the flow.  Further investigations of the data will compare flame structures in the vicinity 

of the cavity with those further downstream. 

 

 
  

Figure 12. Small flame structure. Full image center coordinates: x/H = 5.60, y/H=1.60. 

    

 
Figure 13. Intensity profile of small flame structure. 

C. Turbulence analysis 

A simple, automated method was used to calculate the local flame surface density in OH PLIF images.  Flame 

surface density FSD is the surface area of the flame per unit volume;21 this serves as a metric for the level of turbulence 

of a flame. In this work, FSD is calculated for each single image as a local quantity that varies with position.  The 

FSD is analogous to the length of the path that the flame front takes through an image; it describes the extent to which 

the flame in the field-of-view is wrinkled. The border of a region of high OH signal corresponds to the boundary 

between reactants and products; it is a rough measure of the location of the flame front.22 The flame front for a perfectly 
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laminar flame would trace a straight line across the image; as FSD increases, the flame front turns and traces a longer 

path throught the image, sometimes forming separated islands.  

All images were processed using the application ImageJ. First, the images were thresholded and converted to 

binary.  Thresholding was conducted using the ImageJ “default” method, based on an iterative selection method.23  

This method binarized each image differently, as opposed to the constant threshold described in Section IV. A.  No 

constant threshold was observed to binarize pixels near the flame front appropriately for all images. Thresholding set 

pixel intensities I to one (bright) or zero (dark.) Outliers of radius three pixels and smaller were removed (bright 

outliers first, then dark.)  The magnitude of the gradient (using pixel coordinates xp and yp from 0 to 512) of the image 

was calculated, and the mean of all pixel values in the gradient image was defined as the local FSD for the 

corresponding OH PLIF image. Equation (6) describes this calculation; this process for calculating FSD is similar to 

that of Hult et. al.21 

 

               𝐹𝑆𝐷 = ⟨√(𝜕𝐼 𝜕𝑥𝑝⁄ )
2

+ (𝜕𝐼 𝜕𝑦𝑝⁄ )
2

⟩           (6) 

 

For images that contain large areas of high signal and low signal, this threshold/gradient process produces a well-

defined trace of the flame front, though very small features are often lost. Figure 14 shows each of these steps for such 

an image.  The process fails for images without large distinct contrasting regions.  The threshold does not capture the 

flame front (because little to none of the flame front is present in the image) and draws a meaningless, blurred contour 

instead.  This leads to non-physical, abnormally high values of FSD.  Such a failure is shown in Fig. 15.  

  

    
Figure 14. Threshold/gradient process success.  FSD = 2.134 × 10-2. 

 

    
Figure 15. Threshold/gradient process failure. FSD = 4.170 × 10-2. 

 

Figure 16 shows the images from Fig. 11 after implementing the threshold/gradient process. The FSD values for 

these images follow the trend expected from a visual analysis of turbulence. By calculating average FSD values at 

different (x,y) locations, we may draw conclusions about the effect of position on flame structure. Figure 17 shows 

mean FSD values for three scans across the test section for Case A, with the 48-52% intermittency contour 

superimposed.  It is important to note that this data includes process failures – very high FSD values occur when the 

intermittency is not close to 50%.  FSD data should be discounted in regions away from 50% intermittency, such as 

the two regions of very high FSD in Fig. 17. The data shows a general trend towards higher FSD as the flow proceeds 

downstream. This method could be applied to computational investigations of the flame for direct comparison with 

experimental results. 
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Figure 16. Threshold/gradient images. Left to right, FSD = 6.910 × 10-3, 1.367 × 10-2, 2.273 × 10-2.  

 

 
Figure 17. Plot of flame surface density × 10-2, Case A. 

V. Conclusions 

A high-spatial-resolution OH PLIF system was constructed to image fine structures in a premixed turbulent 

compressible reacting flow.  The system has an spatial resolution limit of 40 × 40 × 25 μm.  The system was used to 

image a flame anchored by a cavity flameholder with a backward-facing step of height 9 mm. Standard test conditions 

comprised T0 = 1200 K, p0 = 300kPa, ϕcombustor ≈ 0.4 and Mcombustor ≈ 0.73. The flame was also imaged at a low-T0 case 

and a low-ϕ. Flame angle was measured for all three cases.  Relative to standard conditions, the low-T0 flame angle 

was larger and the low-ϕ flame angle was smaller. Signal intensity statistics were computed for the observed area. The 

smallest observed features in the flow were approximately 110 μm wide.  An automated method was developed to 

calculate local flame surface density in OH images.  This method indicated an increase in flame surface density as the 

flow moves downstream.  This study has provided a large quantity of data that will be compared with computational 

results in order to refine computational and analytical models of turbulent combustion.  
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